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Abstract

The propagation of the arterial pulse wave in the large systemic arteries has been calculated using a linearised method of

characteristics analysis to follow the waves generated by the heart. The model includes anatomical and physiological data for the 55

largest arteries adjusted so that the bifurcating tree of arteries is well matched for forward travelling waves. The peripheral arteries in

the model are terminated by resistance elements which are adjusted to produce a physiologically reasonable distribution of mean

blood flow. In the model, the pressure and velocity wave generated by the contraction of the left ventricle propagates to the

periphery where it is reflected. These reflected waves are re-reflected by each of the bifurcations that they encounter and a very

complex pattern of waves is generated. The results of the calculations exhibit many of the features of the systemic arteries, including

the increase of the pulse pressure with distance away from the heart as well as the initial decrease and then the large increase in the

magnitude of back flow during late systole going from the ascending aorta to the abdominal aorta to the arteries of the leg. The

model is then used to study the effects of the reflection or absorption of waves by the heart and the mechanisms leading to the

incisura are investigated. Calculations are carried out with the total occlusion of different arterial segments in order to model

experiments in which the effects of the occlusion of different arteries on pressure and flow in the ascending aorta were measured.

Finally, the effects of changes in peripheral resistance on pressure and velocity waveforms are also studied. We conclude from these

calculations that the complex pattern of wave propagation in the large arteries may be the most important determinant of arterial

haemodynamics.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The method of characteristics has previously been
applied to the study of waves in the arteries by a number
of authors (Skalak, 1972; Stettler et al., 1981; Stergio-
pulos et al., 1992). These studies can be grouped loosely
into two approaches: highly idealised models which are
concerned primarily with the propagation of waves in
single vessels and very complex models which have
attempted to predict the detailed behaviour of the
arterial system. In the more complex models, it is
difficult to ascribe cause to effect in the interpretation of
the results of the numerical simulations. That is, it is
impossible to say whether a particular feature of the
results is due primarily to one or another of the several
complexities of the model.
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In this study, we have taken a slightly different
approach to the modelling of waves in the arteries. In
order to study the influence of the complex branching
geometry of the arterial system on its haemodynamics,
we have used a linearised form of the general solution of
the one-dimensional flow equations with highly idealised
cardiac function but a fairly realistic model of the
anatomy of the largest arteries. By including only this
one complexity into our model, we are confident that
any complexities in the results of our calculations are
due to the interaction of the simple input wave with the
reflections and re-reflections arising from the complex
geometry of the large arteries. We then alter the model
parameters to explore the effects of individual features
of our model on arterial pressure and velocity wave-
forms. We do not suggest that the results of our
calculations provide a realistic model of arterial
haemodynamics, but we do believe that the results
demonstrate that many of the features of flow in the
arteries can be ascribed to the effects of wave reflections.
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Wave behaviour in the arteries has primarily been
studied using the impedance method which also
presumes linearity. The earliest comparable study was
by Taylor (1966) who calculated the input impedance of
two random networks of vessels with eight generations.
There was no attempt to model a realistic arterial
system. More recent studies have used more realistic
models of the arterial system in their impedance
calculations (Westerhof and Noordergraaf, 1970; Avo-
lio, 1980; O’Rourke and Avolio, 1980; Stergiopulos
et al., 1992). Indeed, we use the data collected by
Westerhof and Noordergraaf and Stergiopulos et al. as
the basis of our arterial model. The impedance method
has also been applied to models of the pulmonary
circulation (Milnor, 1989) and to a model based upon
measurements of a cast of a right coronary artery
(Zamir, 1998). All of these studies, while comparable to
this work, are carried out in the frequency domain of
Fourier analysis and thus lack the immediacy of the
temporal analysis presented here. Also, impedance
analysis is intrinsically linear whereas the method which
we present can incorporate various non-linearities.

In the theory section, we give a very brief outline of
the theoretical basis of our calculations and the algorithms
we used. The details are available in Wang (1997). We
then calculate the pressure and velocity waveforms at
different locations in the arterial system in response to a
simple, half-sinusoidal left ventricular contraction. The
model is then used to study (i) the role of reflections from
the heart, (ii) the effect of complete occlusion of the aorta
at different locations and (iii) the effects of changes in
peripheral resistance on the arterial pulse waveforms.
Whenever possible, the results of our calculations are
compared with relevant experimental observations.
2. Theory

2.1. The method of characteristics

The behaviour of blood in the arterial system is
simulated as a one-dimensional, incompressible flow in
elastic tubes. The governing equations for the pressure,
P; and mean velocity, U ; are hyperbolic and can be
solved by the method of characteristics (Anliker et al.,
1971; Skalak, 1972; Parker and Jones, 1990). The
solution shows that any disturbance introduced into
the artery will generate pressure and velocity waves that
will propagate with the characteristic velocities U7c;
where c is the local wave speed which is a function of the
local distensibility of the artery D

c ¼
1
ffiffiffiffiffiffiffi
rD

p ;

where D � ð1=AÞdA=dP; where A is the cross-sectional
area of the artery and r is the density of blood. When the
wave speed is greater than the mean velocity, as is the
case in the arteries, one wave propagates downstream,
taken as the positive direction, and the other upstream.

In a uniform artery when viscous effects are
negligible, there is a simple relationship between the
change in pressure, dP; and velocity, dU ; across any
wavefront

dP ¼ 7rc dU :

This relationship is usually known as the water hammer
equation (Allieve, 1909) which can be derived using
conservation of mass and momentum across the wave
(Jones et al., 1994). We note that there is no assumption
about periodicity and that a wave of any waveform,
including discontinuities such as shock waves, will
propagate along these characteristic directions.

2.2. Arterial model

The typical structure of large arteries is bifurcations
with few, if any, trifurcations and no anastomoses in
conduit arteries (Stergiopulos et al., 1992). The bifurcat-
ing tree structure extends to the very small arteries in
most parts of the body, although there are exceptions
such as the kidney, liver, head, hand and foot where
there are interconnections. Thus, the large arterial
system can be properly represented as a bifurcating
tree. For our calculations, we have adapted a realistic
human arterial tree which contains 55 large arteries
(Fig. 1) using data collected by Westerhof et al. (1969)
giving the length, diameter, wall thickness and
elastic modulus for the 55 largest arteries of a normal
adult human (Table 1). Using this data, we have
calculated the wave speed of each segment using the
Moens–Korteweg equation c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=2rR

p
where E is

the Young’s modulus and R is the radius of the vessel.
The calculated wave speeds are included in Table 1. The
terminal vessels in the model are terminated by
resistance vessels through which the flow is determined
by the local pressure and the resistance, Rp: The
peripheral resistances, also given in Table 1, are chosen
to give a physiologically reasonable distribution of mean
flow throughout the model (Stergiopulos et al., 1992).

2.3. Reflections

The two types of reflections that must be considered
in our model are those caused by the bifurcations and
those generated in the high-resistance vessels at the ends
of the terminal segments in our model. The reflection
coefficients, defined as the ratio of the change in
pressure across the reflected wave dP0 to that of the
incident wave DP0; for a bifurcation are

R �
dP0

DP0
¼

Y0 � Y1 � Y2

Y0 þ Y1 þ Y2
;
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Fig. 1. The arterial model used in the calculation. This model was

originally introduced by Westerhof et al. (1969) and contains data for

diameter, length, wall thickness and Young’s modulus for the 55

largest arteries (after Stergiopulos et al., 1992).

1The use of RP as peripheral resistance and RT as terminal reflection

coefficient is unfortunate nomenclature, but one that is forced upon us

by standard usage.
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where i ¼ 0; 1; 2 refer to the parent and two daughter
vessels and Yi � Ai=rci is the characteristic admittance
of the ith vessel where Ai is the cross-sectional area. The
transmission coefficient is T ¼ 1þ R: Both the reflec-
tion and transmission coefficients at the junction depend
upon the area and wave speed of each segment. If there
is no reflection, R ¼ 0; the junction is called ‘well
matched’. We note that this equation is valid for both
forward and backward waves if the parent and daughter
branches are determined relative to the wave rather than
morphologically. Thus, a single bifurcation will have
different reflection coefficients for waves approaching it
in the three different vessels. This directional sensitivity
of the reflection coefficient means that a junction that is
well matched for forward waves can cause substantial
reflections for backward waves (Hardung, 1952).

Calculating the reflection coefficients for the different
bifurcations from the data collected by Westerhof et al.
(1969) and Stergiopulos et al. (1992), we found that the
data resulted in relatively large reflections coefficients
for several of the junctions in the model. For example,
the junction between the thoracic aorta I (segment 18)
and the intercostal and the thoracic aorta II (segments
26 and 27) have a 50% decrease in area which results in
a reflection coefficient RE0:25: These reflections tended
to obscure the effects of the reflections from the
peripheral segments and so we decided to adjust the
radii of the vessels to ensure that our model system was
well matched for forward travelling waves. This was
done by holding the parent vessel radius constant and
increasing or decreasing the radii of both daughter
vessels by the same fraction until R ¼ 0: Table 1 includes
the adjusted radii and the wave speeds calculated from
them with the original radii and wave speeds given in
brackets. Similarly, we found that the symmetry in the
original data for the length of the arteries in the legs
resulted in simultaneous reflections from each of the legs
which resulted in unwanted interactions between re-
flected waves and so we somewhat arbitrarily increased
the length of each artery in the right leg by 1 mm: The
problem of simultaneous reflections from the arms did
not arise because they are not symmetric.

For the resistances at the end of each terminal artery,
the reflection coefficient depend upon the peripheral
resistance, Rp (Lighthill, 1978):

RT �
dP

DP
¼

RP � rc

RP þ rc
:

The values for the terminal reflection coefficients, RT;
are included in Table 1.1

2.4. The method of calculation

The method of characteristics outlined above does not
make any assumptions about linearity. Indeed, the
solution of the full, non-linear equations of one-
dimensional flow is one of the advantages of the
method. There are two principal non-linearities in that
solution: the characteristic directions depend upon the
velocity of the blood and the wave speed can be a
function of pressure. Both of these non-linearities can be
incorporated into the method, but in this study we have
chosen to concentrate our attention on the effects of the
complex geometry of the arteries and so we will assume
that both of these non-linearities have a negligible effect,
i.e. c ¼ constant in each arterial segment and U5c: We
plan to explore the non-linear effects in a subsequent
publication.

With this assumption of linearity, it is possible to
apply the concept of the transfer function to the analysis
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Table 1

Physiological data used in the model based upon the original data collected by Westerhof et al. (1968) and Stergiopulos et al. (1992)

No. Name of segment l (cm) r (cm) h (cm) E ð106 PaÞ c (m/s) RP ð109 Pa s=mÞ

1 Ascending aorta 4.0 1.470 (1.470) 0.163 0.4 4.67 (4.67) —

2 Aortic arch I 2.0 1.263 (1.120) 0.126 0.4 4.43 (4.70) —

3 Brachiocephalic 3.4 0.699 (0.620) 0.080 0.4 4.47 (5.03) —

4 R. subclavian I 3.4 0.541 (0.423) 0.067 0.4 4.93 (5.58) —

5 R. carotid 17.7 0.473 (0.370) 0.063 0.4 5.11 (5.78) —

6 R. vertebral 14.8 0.240 (0.188) 0.045 0.8 8.58 (9.69) 6.01

7 R. subclavian II 42.2 0.515 (0.404) 0.067 0.4 5.05 (5.71) —

8 R. radius 23.5 0.367 (0.174) 0.043 0.8 6.78 (9.85) 5.28

9 R. ulnar I 6.7 0.454 (0.215) 0.046 0.8 6.31 (9.16) —

10 R. interosseous 7.9 0.194 (0.091) 0.028 1.6 10.64 (15.54) 84.3

11 R. ulnar II 17.1 0.433 (0.203) 0.046 0.8 6.45 (9.43) 5.28

12 R. int. carotid 17.6 0.382 (0.177) 0.045 0.8 6.80 (9.99) 13.9

13 R. ext. carotid 17.7 0.382 (0.177) 0.042 0.8 6.57 (9.65) 13.9

14 Aortic arch II 3.9 1.195 (1.070) 0.115 0.4 4.35 (4.59) —

15 L. carotid 20.8 0.413 (0.370) 0.063 0.4 5.47 (5.78) —

16 L. int. carotid 17.6 0.334 (0.177) 0.045 0.8 7.27 (9.99) 13.9

17 L. ext. carotid 17.7 0.334 (0.177) 0.042 0.8 7.02 (9.65) 13.9

18 Thoracic aorta I 5.2 1.120 (1.000) 0.110 0.4 4.39 (4.65) —

19 L. subclavian II 3.4 0.474 (0.423) 0.066 0.4 5.23 (5.53) —

20 L. vertebral 14.8 0.203 (0.180) 0.045 0.8 9.32 (9.91) 6.01

21 L. subclavian II 42.2 0.455 (0.403) 0.067 0.4 5.38 (5.71) —

22 L. radius I 23.5 0.324 (0.174) 0.043 0.8 7.21 (9.85) 5.28

23 L. ulnar I 6.7 0.401 (0.215) 0.046 0.8 6.71 (9.16) —

24 L. interosseous 7.9 0.172 (0.091) 0.028 1.6 11.32 (15.54) 84.3

25 L. ulnar II 17.1 0.383 (0.203) 0.046 0.8 6.87 (9.43) 5.28

26 intercoastals 8.0 0.317 (0.200) 0.049 0.4 5.51 (6.93) 1.39

27 Thoracic aorta II 10.4 1.071 (0.675) 0.100 0.4 4.28 (5.39) —

28 Abdominal aorta I 5.3 0.920 (0.610) 0.090 0.4 4.38 (5.38) —

29 Celiac I 2.0 0.588 (0.390) 0.064 0.4 4.62 (5.68) —

30 Celiac II 1.0 0.200 (0.200) 0.064 0.4 7.93 (7.93) —

31 Hepatic 6.6 0.458 (0.220) 0.049 0.4 4.58 (6.61) 3.63

32 Gastric 7.1 0.375 (0.180) 0.045 0.4 4.85 (7.00) 5.41

33 Splenic 6.3 0.386 (0.275) 0.054 0.4 5.24 (6.21) 2.32

34 Sup. mensenteric 5.9 0.499 (0.435) 0.069 0.4 5.21 (5.58) 0.93

35 Abdominal aorta II 1.0 0.843 (0.600) 0.080 0.4 4.32 (5.12) —

36 L. renal 3.2 0.350 (0.260) 0.053 0.4 5.45 (6.33) 1.13

37 Abdominal aorta III 1.0 0.794 (0.590) 0.080 0.4 4.45 (5.16) —

38 R. renal 3.2 0.350 (0.260) 0.053 0.4 5.45 (6.33) —

39 Abdominal aorta IV 10.6 0.665 (0.580) 0.075 0.4 4.70 (5.04) —

40 Inf. mesenteric 5.0 0.194 (0.160) 0.043 0.4 6.60 (7.26) 6.88

41 Abdominal aorta V 1.0 0.631 (0.520) 0.065 0.4 4.50 (4.95) —

42 R. com. iliac 5.9 (5.8) 0.470 (0.368) 0.060 0.4 5.00 (5.66) —

43 L. com. iliac 5.8 0.470 (0.368) 0.060 0.4 5.00 (5.66) —

44 L. ext. iliac 14.4 0.482 (0.320) 0.053 0.8 6.57 (8.06) —

45 L. int. iliac 5.0 0.301 (0.200) 0.040 1.6 10.21 (12.53) 7.94

46 L. femoral 44.3 0.361 (0.259) 0.050 0.8 7.37 (8.71) —

47 L. deep femoral 12.6 0.356 (0.255) 0.047 0.8 7.20 (8.51) 4.77

48 L. post. tibial 32.1 0.376 (0.247) 0.045 1.6 9.69 (11.96) 4.77

49 L. ant. tibial 34.3 0.198 (0.130) 0.039 1.6 12.44 (15.35) 5.59

50 R. ext. iliac 14.5 (14.4) 0.482 (0.320) 0.053 0.8 6.57 (8.06) —

51 R. int. iliac 5.0 (5.0) 0.301 (0.200) 0.040 1.6 10.21 (12.53) 7.94

52 R. femoral 44.4 (44.3) 0.361 (0.259) 0.050 0.8 7.37 (8.71) 4.77

53 R. deep femoral 12.7 (12.6) 0.356 (0.255) 0.047 0.8 7.20 (8.51) —

54 R. post. tibial 32.2 (32.1) 0.375 (0.247) 0.045 1.6 9.71 (11.96) 4.77

55 R. ant. tibial 34.4 (34.3) 0.197 (0.130) 0.039 1.6 12.46 (15.35) 5.59

The wave speed for each segment is calculated from the Moens–Korteweg equation and the data in the preceding columns. As explained in the text,

the radii were adjusted from the original data (given in brackets) so that all of the bifurcations were well matched for forward waves. The wave speed

based on the original radii are also given in brackets.
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of waves in the arteries. For any linear system the
output, OðtÞ; can be written as the convolution of the
transfer function of the system, HðtÞ; with the input, IðtÞ;
OðtÞ ¼ HðtÞ#IðtÞ; where # denotes the convolution
operator. A convenient way to determine the transfer
function is to measure the response of the system to a
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unit pulse, dðtÞ; where dð0Þ ¼ 1 and dðtÞ ¼ 0 for ta0;
since OðtÞ ¼ HðtÞ#dðtÞ ¼ HðtÞ:

In our problem, the unit pulse is simply a wave of
amplitude 1 entering the arterial system at t ¼ 0: The
transfer function is the response of the arterial system to
this input which can be determined by tracking this
wave through the multiple transmissions and reflections
in the arterial system.

When we try to understand wave propagation in the
arterial system by following each wave, there are three
possible difficulties:

(1) At each bifurcation, it is not necessary for the two
daughter vessels to have equal properties and so it is
possible that one pulse wave has gone through several
segments before the other finishes traversing one.

(2) Two waves originating from the same junction
may go through the same vessels but in different
sequence. These two waves will then coalesce into a
single summation wave. The number of ‘duplicate’ paths
increases combinatorially with the number of segments.

(3) The reflections and transmissions in the arterial
system are unlimited so that some waves may never
return to the origin. Therefore, there is no end for the
computation.

To solve these problems, we adopt a new concept, the
‘tree of waves’, and introduce a numbering method for
the arterial tree suitable for the computation. Each wave
will generate three waves when it encounters a bifurca-
tion; one reflected and two transmitted waves. Thus, the
tree of waves is a trifurcating tree in which the index
denotes the location of the wave in the arterial system
and backward waves are denoted by a negative index.
The structure of the arterial system is a bifurcating tree,
so a binary system is suitable for the numbering of the
branches. The ascending aorta is the root of the tree and
is denoted as 1, its daughter vessels, the aortic arch and
brachiocephalic artery are assigned as 2 ð2� 1Þ and
3 ð2� 1þ 1Þ and so on. Thus, segment N (not a
terminal segment) will have daughter vessels 2N and
2N þ 1: If N is in a terminal segment, it generates only
the wave �N: A backward travelling wave �N will
generate a backward transmitted wave �N=2 mod 1 (the
smallest integer greater than �N=2), a forward trans-
mitted wave N þ 1 (if N is even) or N � 1 (if N is odd)
and a forward reflected wave N: Each backward wave
can generate three waves except those travelling back to
the ascending aorta, �1: If the heart acts as an absorber,
the wave will terminate. If the heart acts as a total
reflector, it will behave like a terminal artery with a
reflection coefficient of unity. This tree of waves model
successfully overcomes the problem of unlimited reflec-
tions and allows us to follow waves that traverse the
same path in different sequences.

The number of waves grows exponentially with time.
It is clearly impossible to record all of the waves that are
generated in a bifurcating system and fortunately it is
unnecessary since many of the waves become very small
in amplitude. In our calculation, we choose a threshold
and neglect all the waves whose amplitude relative to the
input is less than the threshold. We have taken the
threshold as both 10�3 and 10�4 and have chosen 10�3

as the threshold in the calculations shown here since
there is no discernible difference in the waveforms
generated using these two thresholds.

The algorithm used to find the transfer function by
calculating the response of the system to a unit pulse
simply tracks the waves, generation by generation, on
the tree of waves until no waves with amplitude greater
than the threshold remain. This transfer function is then
used to calculate the response of the system to the more
realistic half-sinusoid input condition.
3. Results

The model has been used to calculate the pressure and
velocity waveforms from the ascending aorta to the
femoral artery in response to an idealised waveform
generated by the left ventricle, a single half-sinusoid of
300 ms duration. Since we are interested only in the
resultant waveforms, all results are normalised with
respect to the input wave using the diastolic pressure as
the gauge pressure. The first results that we show are
calculated assuming that the heart absorbs all waves
which are reflected back to the root of the aorta. We
then compare those results to those obtained when the
heart acts as a total reflector. Using these two results, we
model the effect of the aortic valve by treating the heart
as an absorber during systole and as a reflector during
diastole when the aortic valve is closed. These results
also allow us to comment upon the effects of aortic
regurgitation on flow in the more distal arteries.

The model is then used to calculate the response to a
total occlusion of the aorta in an attempt to model the
results of an experiment by Westerhof and his colleagues
(Van den Bos et al., 1971). We then consider the effect of
a decrease in peripheral resistance, comparable to that
which is observed during exercise or in response to
vasodilatory drugs, on the arterial waveforms. And
finally, we look at the influence of the coronary arteries
on the arterial waveforms.

3.1. Waveforms in the ascending Aorta

The pressure transfer function at the ascending aorta
calculated using the data in the model used by
Westerhof et al. (1969) and Stergiopulos et al. (1992)
(Table 1, in brackets) is shown in Fig. 2a, where the
heart is assumed to be an absorber. All the pulse waves
apart from the input are reflections from the mis-
matched bifurcations or the terminal resistances. It is
noted that there is a particularly large pulse wave at



ARTICLE IN PRESS

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

t (s)

H

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
t (s)

H

Fig. 2. The pressure transfer function calculated at the middle of the

ascending aorta. The first line is the unit input pulse which is out of

scale and denoted by an arrow. The rest of the peaks are the waves

reflected by either unmatched bifurcations or terminal resistances. (a)

Calculated using the data given by Westerhof et al. (1969). (b)

Calculated using the well-matched model derived from this data. The

large waves arriving before 0:1 s in (a) are reflections from poorly

matched bifurcations in the original data.
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t ¼ 0:05; which is the reflection from the junction of the
thoracic aorta I as mentioned above. The comparable
transfer functions calculated using the well-matched
model (Table 1) is shown in Fig. 2b. This model will be
used in all of the calculations presented below.

The input waveform generated by ventricular systole
is simply assumed to be a half-sinusoidal wave with a
period of 0:3 s (the lower line in the middle panel of Fig.
3a) which is typical of the duration from the opening of
the aortic valve to its closure. The pressure waveform
(the upper line in middle panel of Fig. 3a) at the point of
observation in the ascending aorta is the convolution of
the input waveform with the pressure transfer function
(left panel of Fig. 3). The velocity waveform (right panel
of Fig. 3) is calculated by the same procedure but using
the velocity transfer function. It is noted that the
pressure transfer function is not the same as the velocity
transfer function since the backward waves produce
pulses which are opposite in sign.

The transformation of the pressure and velocity
waveforms as they propagate along the main aortic
trunk is one of the most striking features of wave
propagation in the systemic arteries. The transfer
functions and waveforms at five locations along the
major arteries are shown in Fig. 3. The results show that
the amplitude of pressure pulse increases distally, the
amplitude of velocity decreases until the abdominal
aorta and then begins to increase, the magnitude of the
reverse flow also decreases and then begins to increase in
the abdominal aorta. This behaviour is similar to that
observed by McDonald (Nichols and O’Rourke, 1998).
Note that the pulses in the transfer function are
generally larger, more concentrated and closer to the
input wave in the more distal arteries, which makes the
pressure waveform steeper and the period of the
pressure waveform shorter.

Backward compression waves coming to the point of
observation from downstream increase the pressure but
decrease the velocity, whereas backward expansion
waves decrease the pressure but increases the flow.
Conversely, forward compression waves arising from re-
reflections from upstream sites increase both the
pressure and velocity waveforms. This causes the
increase in pressure and the decrease of the amplitude
of both the forward velocity and the reverse flow as we
move from the ascending aorta to the abdominal aorta,
while further downstream the biggest waves are forward
waves produced by reflections from branches upstream
which travel without change through the intervening
bifurcations which are well matched for forward waves.

3.2. The role of the heart in wave reflection

Frank (1899, 1905) and Hamilton (1944) first
suggested that waves reflected from the heart might
generate a standing wave in the arterial system.
O’Rourke (1967) and McDonald (1974) rejected the
possibility of standing waves in the arterial system from
their experiments. But Nichols and O’Rourke (1998)
again suggested as a result of their experiments that the
heart valve should make some contribution to the
pressure and velocity waveform.

In order to study the changes in the waveforms caused
by the heart, we also made calculations assuming the
heart is a total reflector, R ¼ 1: The results are shown in
Fig. 4 together with the previous results calculated
assuming the heart is a total absorber, R ¼ 0 (the lighter
line). Several characteristics shown in these figures
deserve comment:

(1) The gap between the pressure waveforms for a
reflecting and absorbing heart is approximately the same
through all the segments. That is because the systemic
arteries are well matched for forward waves so that the
waves reflected by the heart will propagate without
reflection to the terminal segments.

(2) The velocity waveform is approximately the same
as the input and there is almost no flow after the 0:3 s in
the ascending aorta (Fig. 4b). When the heart is a
reflector, the waves coming back from the periphery are
reflected with a change in sign in the velocity, which
leads to a cancellation of the velocity waveform, but
with the same sign in the pressure, which leads to an
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Fig. 3. The pressure transfer function (left), pressure waveform (middle) and velocity waveform (right) at five locations in the arterial system (a)

ascending aorta (segment 1), (b) thoracic aorta I (segment 18), (c) abdominal aorta IV (segment 39), (d) left common iliac artery (segment 42) and (e)

left femoral artery (segment 46). The pressure waveform is the convolution of the pressure transfer function and the aortic input which is simply

assumed to be a half-sinusoidal wave (the dotted line). The velocity is calculated similarly using the velocity transfer function which differs from the

pressure transfer function depending upon the direction of the waves.
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amplification of the pressure waveform. Thus, the input
becomes the only component left in the velocity wave-
form and the pressure waveform is amplified. In the
aortic arch, some waves are transmitted through the
brachiocephalic artery as forward waves without
matched backward waves to cancel them, and so the
flow is not strictly zero.

(3) A second ‘hump’ appears in the velocity waveform
at the thoracic aorta I segment, where a larger lag
between the waves reflected from the heart and
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Fig. 4. Pressure (left) and velocity (right) waveforms at five locations in the arterial system calculated when the heart acts as a reflector (upper lines)

and as an absorber (lower lines): (a) ascending aorta (segment 1); (b) thoracic aorta I (segment 18); (c) abdominal aorta IV (segment (39); (d) left

common iliac artery (segment 42) and (e) left femoral artery (segment 46).
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peripherally reflected waves is expected. Also, some
waves propagate directly from the resistances in the
upper limbs and the head to the observation point, and
they will not have any counterpart to cancel their effects.

One interesting pathological application of the study
of waveforms contributed by the aortic valve is aortic
valve regurgitation arising from failure of the aortic
valve during diastole. Measurement of blood flow in the
femoral artery of patients who suffer from aortic valve
regurgitation shows that there is generally a much larger
reverse flow during diastole than in normal subjects (M.
Heinen, personal communication). Aortic valve regur-
gitation can be simulated by considering the heart as an
absorber while the normal heart is simulated by a total
reflector, and the result is shown in Fig. 4e. The
amplitude of the reverse flow with aortic valve
regurgitation (the lighter line) is almost the same in
contrast to the normal case when the heart is a reflector
where the magnitude of the reverse flow is much lower.
This result suggests that the larger back flow seen in the
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Fig. 5. The pressure (solid) and velocity (dotted) waveforms in the

ascending aorta calculated assuming that the heart acts as an absorber

during systole and as a reflector during diastole when the aortic valve is

closed.
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femoral arteries during diastole could be caused by the
absence of the waves normally reflected by the aortic
valve.

3.3. The incisura and diastolic wave

Normally there is an increase in pressure, that is
accompanied by a sudden cessation of the flow in the
ascending aorta immediately after the closure of the
aortic valve. This pressure rise is called the incisura,
which is characterised as the reaction of the aortic
pressure to the closure of the aortic valve. Normally, the
magnitude of the rise is between 6 and 10 mm Hg in
humans, but sometimes it can be higher so that the
pressure after the closure of the aortic valve is equal or
larger than the peak systolic pressure.

The usual interpretation of the origin of the incisura is
that the back flow which causes the closure of the aortic
valve is suddenly halted by the closure of the aortic valve
giving rise to a short positive pressure immediately after
the closure of the valve (Guyton, 1981). It is sometimes
asserted that this rise in pressure is due to the recovery
of the kinetic energy of the reverse flow when the valve
closes. This is not reasonable since the Bernoulli
equation indicates that a reverse flow of 1 m=s is
required to generate a 4 mm Hg increase in pressure.
However, the pressure and velocity changes associated
with elastic tube waves, given by the water hammer
equation, are physiologically reasonable. We have,
therefore, used the model to simulate the effect of aortic
valve closure on pressure and flow in the ascending
aorta.

In order to incorporate the aortic valve in our model,
the reflection coefficient of the heart is simply classified
as having three states: the first 300 ms when the valve is
fully opened and the heart acts as absorber ðR ¼ 0Þ; a
10 ms period during which the valve is closing when it is
assumed that the reflection coefficient increases from 0
to 1 as a linear function of time, and the final state when
the valve is closed and acts as a reflector ðR ¼ 1Þ: We
note that the time-varying nature of the reflection
coefficient at the heart introduces a non-linearity into
the problem, making the straightforward calculation of
the waveform as a convolution of the input with a
transfer function invalid. That is, the portion of a
reflected wave arriving before the valve is closed will be
absorbed while the latter part of the wave will be
reflected. It is, therefore, necessary to include in the
convolution calculation a factor for each wave arriving
at the heart which depends upon the time of arrival and
accounts for the partial absorption of the wave. For
details of the calculation, see Wang (1997).

The pressure and velocity waveforms calculated with
the closing aortic valve are shown in Fig. 5, where the
input is a half-sinusoidal wave. Several distinct char-
acteristics of the waveforms measured in vivo are
reproduced by this model:
(1)
 The large pressure jump immediately after the
closure of the aortic valve;
(2)
 the reverse flow halts immediately after the valve is
closed;
(3)
 during the diastolic phase, apart from a very small
oscillation, the flow velocity is nearly zero.
The zero flow after the closure of the aortic valve results
from the cancellation of the changes in velocity
produced by the backward waves and those reflected
from the heart, which increases the pressure. Similar
results are seen when the heart is a total reflector. This
study indicates that the waves reflected by the aortic
valve play an important role in determining the aortic
waveforms. The magnified pressure waveform after the
closure of the aortic valve seen in Fig. 5 has been
observed in the human ascending aorta (M. Sugawara,
personal communication), but generally the increase of
pressure after the valve closed is less than we predict. An
amplified pressure after the closure of the aortic valve is
frequently found in kangaroos (Avolio et al., 1984;
Nichols et al., 1986).

3.4. The effect of a complete occlusion of the aorta

The model can be extended to study the effects of an
intervention such as an occlusion of an artery on the
pressure and velocity waveforms. Van den Bos et al.
(1971) performed a classic experiment in which they
measured changes in pressure and flow in the canine
ascending aorta when the aorta was occluded with a
balloon catheter. The four sites of occlusion that they
studied were the upper descending aorta, the aorta at the
level of the diaphragm, the lower abdominal aorta and
one of the iliac arteries. They analysed the results of
their experiments using both an impedance analysis
(Westerhof et al., 1973) and by separation of the
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waveforms into forward and backward components
(Westerhof et al., 1972; Stergiopulos and Westerhof,
1998). The experimental results have also been analysed
using wave intensity analysis (Davies, 1994). When the
occlusion is in the upper descending aorta, there is a
large systolic wave and a prominent inflection point in
the pressure waveform. The peak pressure is about twice
as high as the control waveform. When the occlusion is
at the level of the diaphragm, the inflection point is
delayed and the peak pressure is only about 20% higher
than the peak pressure of the control case. When the
occlusion is in the abdominal aorta, the peak pressure
decreases even more and the inflection point is delayed
until late systole. When the occlusion is in one of the
iliac arteries, there is no discernible difference between
the occluded and control waveforms. The changes
induced in the flow waveforms were relatively small
compared to those of the pressure waveforms.
Fig. 6. The pressure (left) and velocity (right) waveforms in the ascending a

artery: (a) occlusion of the upper descending aorta (segment 18); (b) occlusion

the abdominal aorta (segment 41) and (d) occlusion of the left iliac artery (s
The four corresponding sites in our simulation of the
human model are the thoracic aorta I (segment 18),
abdominal aorta I (segment 28), abdominal aorta V
(segment 41) and the right iliac artery (segment 42). The
heart is assumed to act as an absorber. The results are
shown in Fig. 6 and are compared with the control case
in which there is no occlusion (thinner line). There are
several important features:

(1) When the occlusion is located in the thoracic aorta
I segment (Fig. 6a), the reflected waves arrive at the
point of observation (middle of the ascending aorta) at
110 ms and forms a prominent inflection point. The
peak pressure is about 40% higher than the control
waveform. When the occlusion is in the abdominal aorta
I segment (Fig. 6b), the reflected waves arrive at the
point of observation later ð130 msÞ; and the peak
pressure decreases to about 20% higher than the control
waveform. When the occlusion is in the abdominal V
orta with (solid) and without (dotted) a total occlusion of a peripheral

of the aorta at the level of the diaphragm (segment 28); (c) occlusion of

egment 43).
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Fig. 7. The pressure (upper) and velocity (lower) waveforms in the

ascending aorta calculated for decreasing terminal resistances: (a)

control case; (b) 80% of control and (c) 60% of control.
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segment (Fig. 6c), the reflected waves are even weaker
and arrive at the point of observation even later. Finally,
only a small deviation is found when the occlusion is in
the left external iliac artery (Fig. 6d). The deviation of
the velocity waveforms is relatively small in all cases.

The weakening of the reflected wave as the occlusion
moves distally is due to the increased dispersal of the
reflected wave caused by the mismatching for backward
waves at each of the bifurcations which it encounters on
its path back to the measurement site. For example, the
magnitude of the reflected wave returning directly from
the site of occlusion will be

QN
n¼1 Tn where Tn is the

transmission coefficient of the nth bifurcation and N is
the number of bifurcations in the path between the
occlusion and the site of measurement. When the
occlusion is in the iliac artery, this product is so small
that the effect of the direct reflection is not discernible.
This fact was taken as evidence for no reflections in the
systemic arteries by Peterson and Gerst (1956) who
induced a pressure pulse in a dog’s femoral artery and
did not find any response in the ascending aorta.
Latham et al. (1985) did a similar experiment with the
bilateral occlusion of the femoral arteries of a dog and
again did not find any significant difference in the
pressure waveform measured in the ascending aorta.

(2) When the occlusion is in the thoracic aorta I
segment, there is a significant pressure increase in the
latter portions of the waveform. This gradually dies out
when the occlusion is moved distally. The second
pressure ‘hump’ is due to the group of waves arising
from re-reflections by the occlusion. It should be
remembered that there are no sources of dissipation in
this model apart from the ‘killing’ of waves with
magnitudes less than the threshold. The decrease in
magnitude of the transmitted backward waves is
because they are suffering from significant reflections
due to the mismatching of the bifurcations for backward
waves. These reflected waves propagate forward without
loss through the system to the periphery or to the site of
occlusion where they are again reflected as backward
waves. As a result, the effect of an occlusion of a distal
artery is not a single, easily identifiable wave, but a
dispersed sequence of waves with ever decreasing
magnitudes due to the ever increasing length of the
path which they traverse before reaching the measure-
ment site.

Normally, a sudden aortic occlusion or the increase in
the peripheral resistance would induce a decrease of the
ventricular output and an accumulation of blood in the
ventricle in the first several beats. The enlargement of
the ventricle due to the accumulation will increase the
output of blood to make the system return to normal
(Starling’s law of the heart). This calculation assumes
that the duration of the occlusion is short enough such
that no physiological adjustment occurred in the
cardiovascular system.
3.5. The influence of terminal resistances and the

coronary circulation on waveforms in the ascending aorta

As a final application of the model, we calculate the
variation of the waveforms in the ascending aorta under
the influence of two factors: (1) the variation of terminal
resistance and (2) the inclusion of the coronary
circulation in the calculation.

Terminal resistance decreases with exercise. Murgo
et al. (1981) measured aortic pressure and velocity in
man at rest and during exercise and calculated the
terminal resistance and characteristic impedance. Dur-
ing exercise, there is little change of the incisura and the
backflow, but there is a distinct decrease in the pressure
in diastole. The resistance falls about 35–55% during
exercise, and the variation of the reflection coefficient of
the terminal resistance falls about 10–20%.

To test the influence of the terminal resistances, the
reflection coefficient of each terminal segment is
decreased to 80% and then to 60% of the values in
the table. The result is shown in Fig. 7. The waveforms
are normalised by the peak value of the input waveform.
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As expected, when the terminal resistance decreases, the
amplitude of the pressure decreases, and the decrease is
greatest in late systole and diastole. Concurrently, the
amplitude of the velocity increases and there is less
reverse flow in late systole. In all cases, there is zero flow
after the closure of the aortic valve.

The coronary circulation, which supplies the blood to
the heart, has been neglected in our model calculations.
However, it may have a prominent influence on the
waveforms, particularly in the ascending aorta, espe-
cially in the diastolic phase. The right and left coronary
arteries have their origin in the aorta directly above two
of the cusps of the aortic valve. The branches of the
coronary artery in the myocardium are compressed
during each systole, so that the coronary blood flow is
interrupted and even reverses in early systole. The
coronary flow is restored when the stress in the ventricle
wall decreases below the pressure in the arteries, but
flow is only restored fully during diastole. About 80% of
coronary flow occurs in the diastolic phase at basal heart
Fig. 8. The pressure (upper) and velocity (lower) waveforms in the

ascending aorta calculated assuming that the coronary arteries cause

the heart not to be a total reflector after the aortic valve is closed: (a)

R ¼ 1; (b) R ¼ 0:8 and (c) R ¼ 0:6:
rates (Levick, 1992). About 5% of the cardiac output
goes to the coronary circulation, so that 4% of the total
cardiac output flows into the coronary circulation
during the diastolic phase. This is large enough to
influence the waveforms in the ascending aorta. There-
fore, the reflection coefficient of the heart, which
incorporates the coronary circulation, may not be unity
after the valve closes as we have previously assumed.

The overall reflection coefficient of the heart in the
diastolic phase is still uncertain. In this simulation, we
assumed the reflection coefficient of the heart was 1.0,
0.8 and 0.6 when the valve is closed and zero when the
valve is opened. The calculated waveforms in the
ascending aorta are shown in Fig. 8. The upper line is
the pressure and the lower line is the velocity. All the
calculations are normalised by the peak value of the
input wave. There are two features of the calculation
which should be noted:

(1) The incisura is not very sensitive to the changes of
the reflection coefficient of the heart. The pressure in the
diastolic phase is the result of the summation of the
backward waves and the waves reflected by the heart,
which are the only waves influenced by the heart’s
reflection coefficient.

(2) The inverse flow does not go to zero immediately
after the valve closes. The less the heart reflects, the
longer it takes for the backward flow to go to zero.
4. Conclusions

Before drawing conclusions about our results, we
would like to reiterate that the goal of this study was not
to develop a realistic model of arterial pulse waves but
to develop a model with which we could explore the
influence of wave reflections in the complex geometry of
the arteries. With this goal in mind, we have used a
realistic model of the large arteries adjusted to ensure
that the model bifurcations are well matched for the
transmission of forward waves. We have made simplify-
ing assumptions about the nature of the pulse generated
by the heart, the nature of the terminal segments of our
arterial model and that the non-linear effects of
convection and pressure-dependent wave speed are
negligible. With these assumptions, it is perhaps
surprising that the results of our calculations are so
successful in their prediction of so many of the features
of the arterial pulse wave. The success of this simple
models lead us to believe that reflections within the
complex arterial system are primary determinants of
arterial haemodynamics.

The method of calculation is based upon the method
of characteristics which has the distinct advantage that it
provides a general solution of the non-linear, one-
dimensional equations for flow in elastic tubes. Neglect-
ing viscous dissipation, this solution says that waves
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propagate upstream and downstream without change
with speeds U7c; where c is the local wave speed. In
this paper, we have made the linearising assumptions
that the blood velocity is small compared with the wave
speed so that the waves travel with speeds 7c and that c

does not vary with pressure. When the waves encounter
a change in the properties of the vessel, either at a
bifurcation or a resistance element used to model the
terminal vessels of our model, they are reflected and
transmitted with magnitudes determined by a reflection
coefficient which depend upon the properties of the
vessels at the junction. From measurements of the
geometrical and elastic properties of arterial bifurca-
tions, it has been suggested that most arterial junctions
are well matched for forward wave transmission so that
RE0 (Papageorgiou and Jones, 1988; Papageorgiou
et al., 1990). A less-well-recognised implication of this
observation is that the arterial system is poorly matched
for backward waves because a bifurcation well matched
in one direction is necessarily ill matched in the other.
Simply put, this study is an attempt to explore the
results of this simple observation in the complex
network of the systemic arteries.

With these linearising assumptions, the transfer
function calculated for each arterial segment contains
all of the information necessary to determine the
response of the arterial system to any ejection pattern
produced by the left ventricle. These transfer functions
are extremely complex, indicating the complex pattern
of reflection and re-reflection produced by the terminal
segments and the bifurcations themselves. Comparing
the transfer functions at different distances from the
heart, we see that there is a kind of ‘wave trapping’ in
the more distal parts of the arterial tree because the
bifurcations are poorly matched for backward waves.
That is, backward waves reflected by the terminal
segments suffer significant re-reflections at each of the
bifurcations they encounter and so the wave transmitted
back to the heart is greatly diminished. This phenomena
can explain why previous studies have found little
evidence of disturbances on flow in the ascending aorta
resulting from disturbances or even occlusions of
peripheral vessels (Peterson and Gerst, 1956; Westerhof
et al., 1979; Latham et al., 1985).

The complexity of the transfer functions which we
have calculated may also explain why studies based
upon the impedance method have been so difficult to
interpret when it comes to wave reflections. The transfer
function can be used to calculate the response of the
arterial model to sinusoidal inputs of different frequen-
cies. We have, in fact, done such calculations but have
not reported them here because we did not find the
results to be particularly helpful. Like Taylor (1966) in
his study of a random bifurcating tree, we could not find
any simple way to associate the magnitude and phase of
our results with the properties of our arterial model. Our
conclusion was that the complexity of the arterial
reflections could not be modelled using the concept of
a simple ‘effective’ reflection site.

The results of our calculations suggest that wave
propagation in the arterial system is perhaps the
dominant factor determining the aortic pressure and
velocity waveforms. The tree of waves model gives us a
method of tracking the waves generated by the ventricle
as they propagate through the arterial system being
reflected and re-reflected at each bifurcation. The results
of the calculation exhibit most of the features of
physiologically measured waveforms, that is somewhat
surprising given the number of simplifications which
have been made. The tree of waves model also enables
us to track the origin of each wave and thus determine
the contribution of the different parts of the circulation
to the aortic waveforms and to discuss the effects of
some pathological conditions.

We conclude by observing that the transfer function
could be an important index of the arterial system.
Unfortunately, however, measurement of a transfer
function is difficult. Sipkema et al. (1980) tried to
measure an aortic transfer function in dogs by generat-
ing a pulse by rapid clamping of the ascending aorta and
measuring the reaction of the system. As far as we know,
there have been no attempts to measure an arterial
transfer function in humans.
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